1. 前置知识
1.1 并行与并发
并发是指在一段时间内宏观上多个程序同时运行。
并行指的是同一个时刻,多个任务确实真的在同时运行。
1.2 读现象
通过在写的时候加锁,可以解决脏读。
通过在读的时候加锁,可以解决不可重复读。
通过串行化,可以解决幻读。
1.2.1 脏读
第一种读现象叫做脏读,顾名思义,就是读到了脏数据,即无效数据。
脏读。是指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交(commit)到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是脏数据,依据脏数据所做的操作可能是不正确的。
为了解决脏读问题,所以要提高一点隔离性,我在修改代码的时候,不允许别人读代码。他只能读取到我提交后的代码。但是,提高了隔离性,并发性就降低了一些。
1.2.2 不可重复读
不可重复读。是指在数据库访问中,一个事务范围内两个相同的查询却返回了不同数据。这是由于查询时系统中其他事务修改的提交而引起的。比如事务T1读取某一数据,事务T2读取并修改了该数据,T1为了对读取值进行检验而再次读取该数据,便得到了不同的结果。
我在读读取某一数据的时候,你先不要修改它,这就是进一步提升了隔离性了。
1.2.3 幻读
幻读。指同一个事务内多次查询返回的结果集不一样(比如增加了或者减少了行记录)。比如同一个事务A内第一次查询时候有n条记录,但是第二次同等条件下查询却又n+1条记录,这就好像产生了幻觉。
幻读是不可重复读的一种特殊场景。
1.2.4 不可重复读和幻读的区别
不可重复读重点在于update和delete,而幻读的重点在于insert
1.3 并发控制
当程序中可能出现并发的情况时,我们就需要通过一定的手段来保证在并发情况下数据的准确性,通过这种手段保证了当用户和其他用户一起操作时,所得到的结果和他单独操作时的希望的结果是一样的。
并发控制的目的是保证一个用户的工作不会对另一个用户的工作产生不合理的影响。
没有做好并发控制,就可能导致脏读、不可重复读和幻读等问题。
实现并发控制的主要手段大致可以分为乐观并发控制和悲观并发控制两种。
2. 悲观锁
当我们要对一个数据库中的一条数据进行修改的时候,为了避免同时被其他人修改,最好的办法就是直接对该数据进行加锁以防止并发。
这种借助数据库锁机制在修改数据之前先锁定,再修改的方式被称之为悲观并发控制(又名“悲观锁”,Pessimistic Concurrency Control,缩写“PCC”)。
之所以叫做悲观锁,是因为这是一种对数据的修改抱有悲观态度的并发控制方式。我们一般认为数据被并发修改的概率比较大,所以需要在修改之前先加锁。
悲观并发控制实际上是“先取锁再访问”的保守策略,为数据处理的安全提供了保证。
2.1 悲观锁实现方式
悲观锁的实现,往往依靠数据库提供的锁机制。在数据库中,悲观锁的流程如下:
- 在对记录进行修改前,先尝试为该记录加上排他锁(exclusive locking)。
- 如果加锁失败,说明该记录正在被修改,那么当前查询可能要等待或者抛出异常。具体响应方式由开发者根据实际需要决定。
- 如果成功加锁,那么就可以对记录做修改,事务完成后就会解锁了。
- 其间如果有其他对该记录做修改或加排他锁的操作,都会等待我们解锁或直接抛出异常。
拿比较常用的MySql Innodb引擎举例,来说明一下在SQL中如何使用悲观锁。
要使用悲观锁,我们必须关闭mysql数据库的自动提交属性,因为MySQL默认使用autocommit模式,也就是说,当你执行一个更新操作后,MySQL会立刻将结果进行提交。set autocommit=0;
我们举一个简单的例子,如淘宝下单过程中扣减库存的需求说明一下如何使用悲观锁:
1 | //0.开始事务 |
以上,在对id = 1的记录修改前,先通过for update的方式进行加锁,然后再进行修改。这就是比较典型的悲观锁策略。
如果以上修改库存的代码发生并发,同一时间只有一个线程可以开启事务并获得id=1的锁,其它的事务必须等本次事务提交之后才能执行。这样我们可以保证当前的数据不会被其它事务修改。
MySQL InnoDB默认行级锁。行级锁都是基于索引的,如果一条SQL语句用不到索引是不会使用行级锁的,会使用表级锁把整张表锁住,这点需要注意。
3. 乐观锁
乐观锁(Optimistic Locking)是相对悲观锁而言的,乐观锁假设数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让返回用户错误的信息,让用户决定如何去做。
相对于悲观锁,在对数据库进行处理的时候,乐观锁并不会使用数据库提供的锁机制。一般的实现乐观锁的方式就是记录数据版本。
乐观并发控制相信事务之间的数据竞争(data race)的概率是比较小的,因此尽可能直接做下去,直到提交的时候才去锁定,所以不会产生任何锁和死锁。
3.1 乐观锁实现方式
使用乐观锁就不需要借助数据库的锁机制了。
乐观锁的概念中其实已经阐述了他的具体实现细节:主要就是两个步骤:冲突检测和数据更新。其实现方式有一种比较典型的就是Compare and Swap(CAS)。
CAS是项乐观锁技术,当多个线程尝试使用CAS同时更新同一个变量时,只有其中一个线程能更新变量的值,而其它线程都失败,失败的线程并不会被挂起,而是被告知这次竞争中失败,并可以再次尝试。
比如前面的扣减库存问题,通过乐观锁可以实现如下:
1 | //查询出商品库存信息,quantity = 3 |
以上,我们在更新之前,先查询一下库存表中当前库存数(quantity),然后在做update的时候,以库存数作为一个修改条件。当我们提交更新的时候,判断数据库表对应记录的当前库存数与第一次取出来的库存数进行比对,如果数据库表当前库存数与第一次取出来的库存数相等,则予以更新,否则认为是过期数据。
3.2 ABA问题
以上更新语句存在一个比较重要的问题,即传说中的ABA问题。
比如说一个线程one从数据库中取出库存数3,这时候另一个线程two也从数据库中库存数3,并且two进行了一些操作变成了2,然后two又将库存数变成3,这时候线程one进行CAS操作发现数据库中仍然是3,然后one操作成功。尽管线程one的CAS操作成功,但是不代表这个过程就是没有问题的。
有一个比较好的办法可以解决ABA问题,那就是通过一个单独的可以顺序递增的version字段。改为以下方式即可:
1 | //查询出商品信息,version = 1 |
乐观锁每次在执行数据的修改操作时,都会带上一个版本号,一旦版本号和数据的版本号一致就可以执行修改操作并对版本号执行+1操作,否则就执行失败。因为每次操作的版本号都会随之增加,所以不会出现ABA问题,因为版本号只会增加不会减少。
以上SQL其实还是有一定的问题的,就是一旦发上高并发的时候,就只有一个线程可以修改成功,那么就会存在大量的失败。
3.3 高并发环境下锁粒度把控
对于像淘宝这样的电商网站,高并发是常有的事,总让用户感知到失败显然是不合理的。所以,还是要想办法减少乐观锁的粒度的。
有一条比较好的建议,可以减小乐观锁粒度,最大程度的提升吞吐率,提高并发能力!如下:
1 | //修改商品库存 |
以上SQL语句中,如果用户下单数为1,则通过quantity - 1 > 0的方式进行乐观锁控制。
以上update语句,在执行过程中,会在一次原子操作中自己查询一遍quantity的值,并将其扣减掉1。
怎样才算合理的加锁粒度呢?
其实卫生间并不只是用来上厕所的,还可以洗澡,洗手。这里就涉及到优化加锁粒度的问题。
你在卫生间里洗澡,其实别人也可以同时去里面洗手,只要做到隔离起来就可以,如果马桶,浴缸,洗漱台都是隔开相对独立的,实际上卫生间可以同时给三个人使用。
当然三个人做的事儿不能一样。这样就细化了加锁粒度,你在洗澡的时候只要关上浴室的门,别人还是可以进去洗手的。如果当初设计卫生间的时候没有将不同的功能区域划分隔离开,就不能实现卫生间资源的最大化使用。这就是设计架构的重要性。
4. 如何选择
在乐观锁与悲观锁的选择上面,主要看下两者的区别以及适用场景就可以了。
1、乐观锁并未真正加锁,效率高。一旦锁的粒度掌握不好,更新失败的概率就会比较高,容易发生业务失败。
2、悲观锁依赖数据库锁,效率低。更新失败的概率比较低。
随着互联网三高架构(高并发、高性能、高可用)的提出,悲观锁已经越来越少的被使用到生产环境中了,尤其是并发量比较大的业务场景。